Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Athimoolam, ${ }^{\text {a }}$ J. Kumar, ${ }^{\text {b }}$
 V. Ramakrishnan ${ }^{c}$ and
 R. K. Rajaram ${ }^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Physics, School of Physics, Madurai Kamaraj University, Madurai 625 021, India, ${ }^{\mathbf{b}}$ Crystal Growth Centre, Anna University, Chennai 600025, India, and ${ }^{\text {c }}$ Laser Laboratory, Department of Microprocessors and Computers, School of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail:
rkrsopmku@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Cl}-\mathrm{O})=0.011 \AA$
R factor $=0.038$
$w R$ factor $=0.110$
Data-to-parameter ratio $=8.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis $\left(\mu_{3}\right.$-thiourea)bis $\left(\mu_{2}\right.$-thiourea)octakis(thiourea)hexacopper(I) hexakis(perchlorate)

In the title compound, $\left[\mathrm{Cu}_{6}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{14}\right]\left(\mathrm{ClO}_{4}\right)_{6}$, the interesting feature of the structure lies in the closely packed $\mathrm{Cu}-$ thiourea core, which is a truncated octahedron of two planes and four points at the edges. The octahedron is truncated parallel to the (101) plane. The Cu -thiourea core has pseudocentrosymmetry about the centre of the octahedral void. The structure shows inter- and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Comment

In organic sulfur compounds, thiourea and its derivatives are of great importance. These compounds have been introduced in almost all branches of chemistry and they are commercialized as dyes, photographic films, elastometry plastics and textiles (Chynoweth, 1955). Thiourea complexes with gold(I) are of interest as medicines for the control of rheumatoid arthritis and in cancer chemotherapy (Parish \& Cottrill, 1987).

The crystal structures of $\operatorname{bis}\left(\mu_{2}\right.$-thiourea)hexakis(thiourea) disilver(I) diperchlorate (Udupa \& Krebs, 1973), bis[($\mu_{2^{-}}$ N, N-dimethylthiourea-S,S-bis(N, N^{\prime}-dimethylthiourea- S)sil$\operatorname{ver}(\mathrm{I})]$ diperchlorate (Pakawatchai et al., 1996), bis(N, N^{\prime} -dimethylthiourea- S) gold(I) perchlorate and $\operatorname{bis}\left(N, N^{\prime}\right.$-diethyl-thiourea-S)gold(I) perchlorate (Staples et al., 1997), tetrathioureacopper(I) chloride (Lakshmi et al., 2003), and hexakis(thiourea)lead(II) perchlorate (Goldberg \& Herbstein, 1972) have already been published. The formation of a complex of thiourea with copper perchlorate has already been

Received 5 August 2005
Accepted 12 September 2005
Online 17 September 2005

Figure 1
(a) The Cu-thiourea cage and (b) the perchlorate groups of (I), showing the atom-numbering schemes and 50% probability displacement ellipsoids.
reported as $\operatorname{bis}\left(\mu_{2}\right.$-thiourea)tetrakis(thiourea)dicopper(I) diperchlorate in $P 2_{1} / c$ (Hanic \& Durcahska, 1969).

In the present investigation, the title compound, (I), crystallized in the non-centrosymmetric space group $C c$ with six Cu^{I} cations, 14 thiourea molecules and six perchlorate anions in the asymmetric unit. The high affinity of Cu^{I} for thiourea molecules leads to a truncated octahedron, a cage-like structure. Thiourea molecules coordinate two metal atoms through the S atom in such a manner that the distorted tetrahedral environment of every Cu atom includes four S atoms. This forms a closely packed Cu -thiourea cage, which has a void space inside (Filinchuk et al., 2001). During the structure analysis, it was observed that the unit cell contains large accessible voids in the crystal structure which tend to host disordered solvent water molecules. This affects the diffraction pattern, mostly at low scattering angles; this was corrected with the SQUEEZE program (PLATON; Spek, 2003). Even though compound (I) crystallizes in a non-centrosymmetric space group, the truncated octahedron has a pseudo-inversion centre.

There are two metal-metal interactions in the structure of (I), with $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of 2.807 (4) and 2.768 (3) \AA,

Figure 2
The Cu-thiourea cage - a truncated octahedron.
involving four Cu atoms $(\mathrm{Cu} 1, \mathrm{Cu} 2, \mathrm{Cu} 3$ and Cu 4$)$ to form a cross-sectional plane, with atoms S13 and S14 bisecting the octahedral core into two distorted pyramids (Table 1). Three types of $\mathrm{Cu}-\mathrm{S}-\mathrm{Cu}$ bond angles are observed in the $\mathrm{Cu}-$ thiourea cage of (I), namely normal $\left(=120^{\circ}\right)$, compressed $\left(<120^{\circ}\right)$ and expanded $\left(>120^{\circ}\right)$ (Table 1). The compressed $\mathrm{Cu}-\mathrm{S}-\mathrm{Cu}$ bonds are the consequence of the $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions. The cage (truncated octahedron) is formed by four points (atoms) and two parallel planes (Fig. 2). The four points are the centres of the atoms $\mathrm{Cu} 5, \mathrm{Cu}, \mathrm{S} 13$ and S 14 and the two planes are the atoms $\mathrm{Cu} 1, \mathrm{~S} 9, \mathrm{Cu} 2, \mathrm{~S} 10$ and $\mathrm{Cu} 3, \mathrm{~S} 11, \mathrm{Cu} 4, \mathrm{~S} 12$. These two planes are parallel to the (101) plane of the unit cell, i.e. the octahedral shape is truncated parallel to the ac plane. The $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions between these parallel planes through atoms S13 and S14, and the $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions between the atoms in the planes $(\mathrm{Cu} 1$, $\mathrm{Cu} 2, \mathrm{Cu} 3$ and Cu 4$)$ with the Cu atoms in the edges $(\mathrm{Cu} 5$ and Cu6) through atoms S9, S10, S11 and S12, have expanded $\mathrm{Cu}-\mathrm{S}-\mathrm{Cu}$ angles. These expanded $\mathrm{Cu}-\mathrm{S}-\mathrm{Cu}$ angles lead to slightly elongated octahedra along the directions of Cu 5 and Cu6. The faces of the truncated octahedra can be described by ten planes constituted by the sets of atoms $\mathrm{Cu} 2 / \mathrm{S} 9 / \mathrm{Cu} 1 / \mathrm{S} 10$ ($0.089 \AA$) , $\quad \mathrm{Cu} 3 / \mathrm{S} 12 / \mathrm{Cu} 4 / \mathrm{S} 11 \quad(0.0915 \AA$ A $), \quad \mathrm{Cu} 2 / \mathrm{S} 10 / \mathrm{Cu} 6 / \mathrm{S} 13$ (0.0376 £), Cu2/S9/Cu5/S13 (0.0863 A), Cu3/S11/Cu6/S13 $(0.0221 \AA), \quad \mathrm{Cu} 3 / \mathrm{S} 12 / \mathrm{Cu} 5 / \mathrm{S} 13(0.0600 \AA), \quad \mathrm{Cu} 1 / \mathrm{S} 10 / \mathrm{Cu} 6 / \mathrm{S} 14$ $(0.0545 \AA$ A) $, \quad \mathrm{Cu} 1 / \mathrm{S} 9 / \mathrm{Cu} 5 / \mathrm{S} 14 \quad(0.0456 \AA), \quad \mathrm{Cu} 4 / \mathrm{S} 11 / \mathrm{Cu} 6 / \mathrm{S} 14$ $(0.0469 \AA)$ and $\mathrm{Cu} 4 / \mathrm{S} 12 / \mathrm{Cu} 5 / \mathrm{S} 14(0.0388 \AA)$; the values in parentheses are the r.m.s. deviations of the fitted atoms in the mean plane. The angles between these planes vary from 64.4 (2) to 89.0 (2) ${ }^{\circ}$

All the thiourea groups in (I) are planar. Of the 14 thiourea molecules, eight are outside the cage ($\mathrm{S} 1-\mathrm{S} 8$) and not involved in bridging between Cu atoms. In the other six thiourea molecules, two (S13 and S14) each bridge two Cu atoms as $\mu_{2^{-}}$
bridging ligands and the other four participate in μ_{3}－bridging． The tetrahedral geometry of the CuS_{4} group is distorted because of the different coordination nature of the thiourea molecules in relation to the Cu atoms．

All the perchlorate groups show nearly tetrahedral symmetry and play a vital role in hydrogen bonding，which stabilizes the crystal structure．The average $\mathrm{Cl}-\mathrm{O}$ bond distances and $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ bond angles are $1.407 \AA$ and 109.5° ， respectively（Table 1）．

The S atoms which are just outside the Cu －thiourea core participate in strong and moderate hydrogen bonding．The $\mathrm{N} 9-\mathrm{H} 9 B \cdots \mathrm{~S} 7^{\mathrm{i}}$ intermolecular bond seems to be a strong bond［ $3.276 \AA$ and 175° ］．Interestingly，there is only one N－ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bond $(\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 14)$ found in the three－ centred hydrogen－bonding network．The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the thiourea molecules and the perchlorate groups seem to be moderate hydrogen bonds．The excess of acceptor atoms in the structure leads to a large number of three－centred hydrogen bonds（Table 2）．

Experimental

$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g}, 5.40 \mathrm{mmol})$ and thiourea $(2.25 \mathrm{~g}, 29.6 \mathrm{mmol})$ were mixed in water $(50 \mathrm{ml})$ and heated slightly over a water bath to give complete dissolution．Slow evaporation of the solvent yielded a white crystalline powder which was recrystallized from triply distilled water to yield white single crystals of the title complex．Caution： Although no problems were encountered in this work，all perchlorate compounds are potentially explosive and should be prepared in small amounts and handled with care．

Crystal data

$\left[\mathrm{Cu}_{6}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{14}\right]\left(\mathrm{ClO}_{4}\right)_{6}$
$M_{r}=2043.65$
Monoclinic，$C c$ 。
$a=17.229$（2）A
$b=15.363$（3）A
$c=27.639$（5）\AA
$\beta=93.30(15)^{\circ}$
$V=7304(2) \AA^{3}$
$Z=4$
$D_{x}=1.859 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.845 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nonius MACH3 diffractometer $\omega / 2 \theta$ scans
Absorption correction：ψ scan （North et al．，1968）
$T_{\text {min }}=0.568, T_{\text {max }}=0.647$
7120 measured reflections 6610 independent reflections 5203 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.110$
$S=1.03$
6610 reflections
829 parameters
H －atom parameters constrained
D_{m} measured by by flotation in a mixture of carbon tetrachloride and bromoform
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.2-13.6^{\circ}$
$\mu=2.42 \mathrm{~mm}^{-1}$
$T=293$（2）K
Block，white
$0.24 \times 0.2 \times 0.18 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.046 \\
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 20 \\
& k=-1 \rightarrow 18 \\
& l=-32 \rightarrow 32
\end{aligned}
$$

3 standard reflections frequency： 60 min intensity decay：none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0685 P)^{2}\right. \\
& +13.3767 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\max }=1.22 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.86 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 228 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.015 \text { (17) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ ．

$\mathrm{Cu} 1-\mathrm{S} 9$	$2.455(2)$	$\mathrm{Cu} 3-\mathrm{S} 3$	$2.271(3)$
$\mathrm{Cu} 1-\mathrm{Cu} 2$	$2.807(4)$	$\mathrm{Cu} 3-\mathrm{Cu} 4$	2.768 （3）
$\mathrm{Cu} 2-\mathrm{S} 9-\mathrm{Cu} 5$	$119.08(13)$	$\mathrm{Cu} 4-\mathrm{S} 11-\mathrm{Cu} 3$	$71.02(14)$
$\mathrm{Cu} 2-\mathrm{S} 9-\mathrm{Cu} 1$	$71.69(14)$	$\mathrm{Cu} 6-\mathrm{S} 11-\mathrm{Cu} 3$	$129.45(11)$
$\mathrm{Cu} 5-\mathrm{S} 9-\mathrm{Cu} 1$	$132.65(11)$	$\mathrm{Cu} 3-\mathrm{S} 12-\mathrm{Cu} 5$	$117.68(13)$
$\mathrm{Cu} 1-\mathrm{S} 10-\mathrm{Cu} 6$	$117.02(13)$	$\mathrm{Cu} 3-\mathrm{S} 12-\mathrm{Cu} 4$	$71.04(14)$
$\mathrm{Cu} 1-\mathrm{S} 10-\mathrm{Cu} 2$	$72.07(15)$	$\mathrm{Cu} 5-\mathrm{S} 12-\mathrm{Cu} 4$	$130.08(11)$
$\mathrm{Cu}-\mathrm{S} 10-\mathrm{Cu} 2$	$128.04(11)$	$\mathrm{Cu} 2-\mathrm{S} 13-\mathrm{Cu} 3$	$120.77(14)$
$\mathrm{Cu} 4-\mathrm{S} 11-\mathrm{Cu} 6$	$120.88(13)$	$\mathrm{Cu} 1-\mathrm{S} 14-\mathrm{Cu} 4$	$119.27(13)$

Table 2
Hydrogen－bond geometry（ ${ }^{\circ},{ }^{\circ}$ ）．

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 43^{\mathrm{i}}$	0.86	2.43	3.080 （17）	133
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 33^{\text {ii }}$	0.86	2.59	3.289 （19）	139
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 43^{\mathrm{i}}$	0.86	2.32	2.997 （14）	136
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 14$	0.86	2.55	3.125 （15）	125
N2－H2B．．S14	0.86	2.74	3.556 （10）	158
N3－H3A ．． O 42	0.86	2.57	3.30 （2）	143
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 41$	0.86	2.21	3.068 （13）	177
N4－H4B．．S13	0.86	2.67	3.500 （10）	163
N5－H5B．．S13	0.86	2.92	3.725 （11）	157
N6－H6A ．． 031	0.86	2.47	3.153 （15）	137
N6－H6A ．． O 52	0.86	2.55	3.140 （17）	127
N6－H6B ．．S8 ${ }^{\text {iii }}$	0.86	3.00	3.528 （10）	121
$\mathrm{N} 7-\mathrm{H} 7 A \cdots \mathrm{O} 54{ }^{\text {iv }}$	0.86	2.45	3.121 （14）	135
N7－H7B．．S14	0.86	2.79	3.624 （9）	164
$\mathrm{N} 8-\mathrm{H} 84 \cdots \mathrm{O} 51{ }^{\text {iv }}$	0.86	2.16	3.009 （15）	171
$\mathrm{N} 8-\mathrm{H} 8 B \cdots \mathrm{O} 12{ }^{\text {v }}$	0.86	2.60	3.430 （13）	162
$\mathrm{N} 9-\mathrm{H} 9 B \cdots \mathrm{~S} 7^{\mathrm{vi}}$	0.86	2.42	3.276 （12）	175
N10－H10B．．．S9	0.86	2.66	3.422 （12）	149
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 23{ }^{\text {ii }}$	0.86	2.25	3.000 （16）	146
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{O} 24{ }^{\text {ii }}$	0.86	2.49	3.270 （16）	152
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{O} 41^{\mathrm{ii}}$	0.86	2.59	3.177 （14）	126
$\mathrm{N} 12-\mathrm{H} 12 B \cdots \mathrm{~S} 7$	0.86	2.72	3.571 （12）	171
$\mathrm{N} 13-\mathrm{H} 13 A \cdots \mathrm{O} 31^{\mathrm{ii}}$	0.86	2.11	2.954 （13）	166
$\mathrm{N} 13-\mathrm{H} 13 B \cdots \mathrm{O} 3^{\text {ii }}$	0.86	2.40	2.947 （15）	122
$\mathrm{N} 14-\mathrm{H} 14 A \cdots \mathrm{O} 33^{\text {ii }}$	0.86	2.22	3.016 （16）	153
N14－H14B ．．O61	0.86	2.53	3.341 （14）	157
$\mathrm{N} 15-\mathrm{H} 15 A \cdots \mathrm{O} 62{ }^{\text {vi }}$	0.86	2.26	3.078 （16）	160
$\mathrm{N} 16-\mathrm{H} 16 A \cdots \mathrm{O} 61{ }^{\text {vi }}$	0.86	2.31	3.098 （12）	152
N16－H16A ．．O54 ${ }^{\text {vii }}$	0.86	2.60	3.124 （12）	120
N16－H16B．．．S5	0.86	2.58	3.439 （10）	173
$\mathrm{N} 17-\mathrm{H} 17 A \cdots \mathrm{O} 21{ }^{\text {vii }}$	0.86	2.23	2.994 （14）	147
N17－H17B．．．S2	0.86	2.73	3.507 （10）	151
N18－H18A ．． $\mathrm{O}^{\text {2 }}{ }^{\text {vii }}$	0.86	2.23	2.991 （14）	147
N18－H18B．．．S8	0.86	2.64	3.483 （10）	166
N19－H19A ．．O63 ${ }^{\text {viii }}$	0.86	2.50	3.230 （14）	144
N19－H19B．．．S6	0.86	2.72	3.565 （10）	167
$\mathrm{N} 20-\mathrm{H} 20 A \cdots \mathrm{O} 3^{\text {viii }}$	0.86	2.25	3.033 （13）	152
$\mathrm{N} 20-\mathrm{H} 20 B \cdots \mathrm{~S} 1$	0.86	2.71	3.485 （10）	150
$\mathrm{N} 21-\mathrm{H} 21 A \cdots \mathrm{O} 64{ }^{\text {iii }}$	0.86	2.48	3.236 （13）	147
$\mathrm{N} 21-\mathrm{H} 21 A \cdots \mathrm{O} 43^{\mathrm{ii}}$	0.86	2.58	3.067 （13）	117
$\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{~S} 6$	0.86	2.66	3.507 （11）	168
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O} 64{ }^{\text {iii }}$	0.86	2.27	3.075 （13）	155
$\mathrm{N} 22-\mathrm{H} 22 B \cdots \mathrm{O} 13{ }^{\text {v }}$	0.86	2.50	3.070 （15）	124
$\mathrm{N} 23-\mathrm{H} 23 A \cdots \mathrm{O} 32$	0.86	2.61	3.134 （15）	121
$\mathrm{N} 23-\mathrm{H} 23 B \cdots \mathrm{~S} 8$	0.86	2.89	3.623 （9）	144
$\mathrm{N} 24-\mathrm{H} 24 A \cdots \mathrm{O} 22^{\text {v }}$	0.86	2.30	3.096 （14）	154
$\mathrm{N} 24-\mathrm{H} 24 B \cdots \mathrm{O} 13{ }^{\mathrm{v}}$	0.86	2.45	3.035 （13）	126
N25－H25A ．． O 12	0.86	2.19	2.981 （13）	154
$\mathrm{N} 25-\mathrm{H} 25 B \cdot \mathrm{~S} 2$	0.86	2.73	3.570 （10）	166
N26－H26A ．．O12	0.86	2.29	3.061 （13）	149
N26－H26B．．．S3	0.86	2.68	3.519 （9）	166
N27－H27A．．．S3 ${ }^{\text {vii }}$	0.86	2.97	3.497 （9）	121
$\mathrm{N} 27-\mathrm{H} 27 B \cdots \mathrm{~S} 1$	0.86	2.68	3.532 （10）	170
$\mathrm{N} 28-\mathrm{H} 28 A \cdots \mathrm{~S} 2^{\mathrm{v}}$	0.86	2.98	3.415 （9）	114
N28－H28B．．．S4	0.86	2.75	3.594 （11）	167

Symmetry codes：（i）$x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$ ；（ii）$x,-y+1, z+\frac{1}{2}$ ；（iii）$x+\frac{1}{2}, y+\frac{1}{2}, z$ ；（iv） $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$ ；（v）$x-\frac{1}{2}, y+\frac{1}{2}, z$ ；（vi）$x,-y+1, z-\frac{1}{2}$ ；（vii）$x-\frac{1}{2}, y-\frac{1}{2}, z ;$（viii） $x+\frac{1}{2}, y-\frac{1}{2}, z$ ．

All H atoms were placed in geometrically calculated positions, with $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the refinement using the ridingmodel approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The highest peak is located $1.00 \AA$ from atom Cl1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

The authors thank the Department of Science and Technology, Government of India, for establishing the SingleCrystal Diffractometer Facility at the School of Physics, Madurai Kamaraj University, Madurai, through the FIST programme.

References

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Chynoweth, D. S. (1955). Chem. Rev. 55, 181-228.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Filinchuk, Y. E., Oliinik, V. V., Glovyak, T. \& Mys'kiv, M. G. (2001). Russ. J. Coord. Chem. 27, 126-134.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Goldberg, I. \& Herbstein, F. H. (1972). Acta Cryst. B28, 400-407.
Hanic, F. \& Durcahska, E. (1969). Inorg. Chim. Acta, 3, 293-299.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Lakshmi, S., Sridhar, M. A., Shashidhara Prasad, J., Srinivasan, V., Kandhaswamy, M. A. \& Dhandapani, M. (2003). Anal. Sci. 19, x19-x20.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Figure 3
A packing diagram of the molecule, viewed down the b axis. Dashed lines indicate hydrogen bonds.

Pakawatchai, C., Sivakumar, K. \& Fun, H.-K. (1996). Acta Cryst. C52, 19541957.

Parish, R. V. \& Cottrill, S. M. (1987). Gold Bull. 20, 3-12.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Staples, R. J., Fackler, J. P. Jr \& Costamagna, J. (1997). Acta Cryst. C53, 15551558.

Udupa, M. R. \& Krebs, B. (1973). Inorg. Chim. Acta, 7, 271-276.

